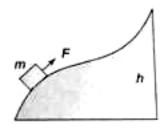

Max. Marks: 60

Date: 16.10.2022

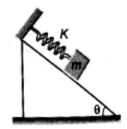
JB 2 MR BATCH (SET B) PHYSICS : DCT

Topics: Work Energy Power


- 1. A particle moved from position $\vec{r_1} = 3\hat{i} + 2\hat{j} 6k$ to position $\vec{r_2} = 14\hat{i} + 13\hat{j} + 9k$ under the action of a force $(4\hat{i} + \hat{j} + 3k)$ newtons. Find the work done.
 - (a) 10 J (b) 100 J (c) 0.01 J (d) 1 J
- 2. The work done by the force = $\vec{F} = A(y^2\hat{i} + 2x^2\hat{j})$, where A is a constant and x and y are in meters around the path shown is:

(a) zero (b) Ad (c) Ad^2 (d) Ad^3

3. A body of mass m is slowly pulled up the hill by a force F which at each point was directed along the tangent of the trajectory as shown in figure. All surfaces are smooth. Find the work performed by this force.

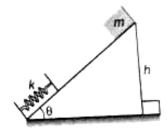

(a) mgl (b) -mgl (c) mgh (d) zero

- 4. A block of mass 2 kg is dropped from a height of 40 cm on a spring whose force-constant is 1960 Nm⁻¹. The maximum distance through which the spring is compressed by
 - (a) 5 cm (b) 15 cm (c) 20 cm (d) 10 m
- 5. A slab S of mass m is released from a height h_0 from the top of a spring of force constant k. The maximum compression x of the spring is given by the equation

(a)
$$mgh_0 = \frac{1}{2}kx^2$$

(b) $mg(h_0 - x) = \frac{1}{2}kx^2$
(c) $mgh_0 = \frac{1}{2}k(h_0 + x)^2$
(d) $mg(h_0 + x) = \frac{1}{2}kx^2$

- A pump is required to lift 800 kg of water per minute from a 10 m deep well and eject it with speed of 20 m/s.The required power in watts of the pump will be
 - (a) 6000 (b) 4000 (c) 5000 (d) 8000
- A ball is dropped onto a floor a height of 10 m. If 20% of its initial energy is lost, then the height of bounce is
 (a) 2 m
 (b) 4 m
 (c) 8 m
 (d) 6.4 m
- 8. A system of wedge and block as shown in figure, is released with the spring in its natural length. All surfaces are frictionless. Maximum elongation in the spring will be



(a)	$\frac{2 \text{mg} \sin \theta}{\text{K}}$	(b)	$\frac{\text{mg sin }\theta}{\text{K}}$	(c) $\frac{4 \operatorname{mg} \sin \theta}{K}$ (d)	$\frac{\text{mg}\sin\theta}{2\text{K}}$
-----	--	-----	---	---	---

9. A body of mass m is released from a height h on a smooth inclined plane that is shown in the figure. The following can be true about the velocity of the block knowing that the wedge is fixed

- (a) v is highest when it just touches the spring
- (b) v is highest when it compresses the spring by some amount
- (c) v is highest when the spring comes back to natural position
- (d) v is highest at the maximum compression
- 10. A spring of spring constant 5×10^3 N/m is stretched initially by 5 cm from the unstretched position. The work required to further stretch the spring by another 5 cm is
 - (a) 6.25 N-m (b) 12.50 N-m (c) 18.75 N-m (d) 25.00 N-m
- 11. A car mass 1000 kg accelerates uniformly from rest to a velocity of 54 km/h in 5 s. The average power of the engine during this speed is (neglect friction):
 - (a) 2000 W (b) 45000 W (c) 2250 W (d) 22500 W
- 12. A particle moves on a rough horizontal ground with some initial velocity say v_0 . If (3/4)th of its kinetic energy is lost in friction in time t_0 , then coefficient of friction between the particle and the ground is:
 - (a) $\frac{v_0}{2gt_0}$ (b) $\frac{v_0}{4gt_0}$ (c) $\frac{3v_0}{4gt_0}$ (d) $\frac{v_0}{gt_0}$

- 13. If a number of forces act on a body and the body is in static or dynamic equilibrium, then:
 - (a) work done by any individual force must be zero
 - (b) net work done by all the forces is +ve
 - (c) net work done by all the force is -ve
 - (d) net work done by all the forces is zero
- 14. A body of mass m kg is lifted by a man to a height of one metre in 30 s. Another man lifts the same mass to the same height in 60 s. The work done by them are in the ratio
 - (a) 1:2 (b) 1:1 (c) 2:1 (d) 4:1
- 15. A force $F = (5\hat{i} + 3\hat{j})$ newtons is applied over a particle which displaces it form its origin to the point $r = (2\hat{i} 1\hat{j})$ metres. The work done on the particle is
 - (a) -7 joules (b) +13 joules (c) +7 joules (d) +11 joules

Max Marks: 60

Date: 16.10.2022

JB 2 MR BATCH CHEMISTRY : DCT SET - B Topic: Atomic Structure + Mole Concept + Periodic

16.	Dlana	- k's constant has the	a como di	mensions as that of		-		
10.	(a)	power	(b)	work	(c)	radiant energy	(d)	angular momentum
	(u)	power	(0)	WOIK	(0)	radiant energy	(u)	ungului momentum
17.	Which	h of the following s	eries of	transitions in the spe	ectrum of	hydrogen atom falls	in visible	e region?
	(a)	Lyman series	(b)	Balmer series	(c)	Paschen series	(d)	Brackett series
18.	Atom	ic number and mas	s numbe	er of an element M a	are 25 and	1 52 respectively. Th	e numbe	r of electrons, protons
	and n	eutrons in M ⁺² ion a	are respe	ctively				
	(a)	25, 25 and 27	(b)	25, 27 and 25	(c)	27, 25 and 27	(d)	23, 25 and 27
19.	The r	atio of ionization er	nergy of I	H and Be ⁺³ is				
	(a)	1:4	(b)	1:8	(c)	1:16	(d)	16:1
20.	O_2^{2-} i	s the symbol of	ion.					
	(a)	Oxide	(b)	Super	(c)	Peroxide	(d)	Monoxide
21.	The n	umber of orbitals in	n the fou	rth principal quantu	n number	will be		
	(a)	4	(b)	8	(c)	12	(d)	16
22.	State	ment I: NaNO ₃ has	no defini	te molecule.				
	State	nent II: Its formula	mass is	85.				
	(a)	If Statement I is	true, Sta	tement II is true, Sta	tement II	is the correct explan	ation of s	statement I.
	(b)	If Statement I is	true, Sta	tement II is true, Sta	tement II	is not the correct exp	olanation	for Statement I.
	(c)	Statement I is tru	ie but sta	tement II is false.				
23.	Whic	h of the following i	s a comp	ound				
	(a)	Diamond	(b)	$Salt + H_2O$	(c)	Washing soda	(d)	Ca

24.	The energ	y absorbed by a	each mol	ecule (A ₂) of a subst	ance is 4	4×10^{-19} J and bond	energy	per molecule is 4.0 \times		
	10 ⁻¹⁹ J. Tl	ne kinetic energy	y per ato	m will be						
	(a) 2	$0 \times 10^{-20} \mathrm{J}$	(b)	$2.2\times10^{-19}J$	(c)	$2.0\times 10^{-19}~J$	(d)	$4.0\times10^{-20}J$		
25.	Physical s	state of water at	273 K is							
	(a) S	olid	(b)	Liquid	(c)	Gas	(d)	Both (a) and (b)		
26.	The outer most orbit of an element X is partially filled with electrons in 's' and 'p' subshells. The element is									
	(a) An inert gas				(b)	A representative ele	ement			
	(c) A	transition elem	ent		(d)	An inner transition element				
27.	Which of	the following 3	d orbital	s has electron density	along al	ll three axes?				
	(a) 3	(a) $3d_{xy}$		(b) 3d _{yz}		$3d_{z^2}$	(d)	3d _{zx}		
28.	A membe	r of Lanthanide								
	(a) C	aesium	(b)	Lanthanum	(c)	Neoybium	(d)	Lutetium		
29.	Match the	following.								
	Type-I	Type-II								
	Series	Elements								
	A) 3d	1) Sc (21) to	Zn (30)							
	B) 4d	2) La (57), Hf	(72) to H	łg (80)						
	C) 5d	3) Y (39) to C	d (48)	100000 00 00						
	D) 6d	4) Ac (89), Rt	f (104) to	Mt (109)						
	(a) A	-1, B-3, C-2, D-	4 (b)	A-2, B-3, C-l, D-4	(c)	A-3, B-1, C-2, D-4	(d)	A-4, B-2, C-3, D-1		
30.	The numb	er of nucleons i	n chlorii	ne-37 is						
	(a) 1'	7	(b)	20	(c)	54	(d)	37		
				* * * *	* *					

Max Marks: 60

Date: 16.10.2022

JB 2 MR BATCH PHYSICS : DCT SET - B ANSWER KEY Topics: Work Energy Power

1.	(b)	2.	(d)	3.	(c)	4.	(d)	5.	(d)
6.	(b)	7.	(c)	8.	(a)	9.	(b)	10.	(c)
11.	(d)	12.	(a)	13.	(d)	14.	(b)	15.	(c)

Max Marks: 60

Date: 16.10.2022

JB 2 MR BATCH CHEMISTRY : DCT SET - B ANSWER KEY Topic: Atomic Structure + Mole Concept + Periodic

16.	(d)	17.	(b)	18.	(d)	19.	(c)	20.	(c)
21.	(d)	22.	(b)	23.	(c)	24.	(a)	25.	(d)
26.	(b)	27.	(c)	28.	(d)	29.	(a)	30.	(d)